CHARACTERIZATION OF PROTEASES FROM BACILLUS SUBTILIS.

Mendes, C.M.¹.; Lima Filho, J. L.¹, Porto, A.L.F.¹; Silva, G.M.M¹.

¹⁻ Laboratório de Imunopatologia Keizo Asami Lika. Universidade Federal de Pernambuco, Pernambuco, Brazil.

Proteases are one of the most important industrial enzymes accounting for nearly 60% of total world wide enzymes sales. Gram-positive, spore-forming bacterium Bacillus subtilis produces several proteases at the end of the exponential phase of growth. The aim of this work was the characterization of extracelullar enzymes from *Bacillus subtilis*. The bacteria were grown at 37°C in Soy medium. After incubating for 36h, the extracellular enzymes were obtained by centrifugation (8000 rpm; 4°C; 10 min). Proteolytic activity was determined using azocasein 1% (w/v) as substrate. The protein concentration of the preparation was 0.118 mg.mL⁻¹. The enzyme was active in temperature range 45°C-65°C, and optimum pH was 9.0 (0.1M Tris-HCl buffer). The enzyme retained about 70% of initial activity after 120 min at 25-45°C. In the pH range 6-9 the enzymes were stable for 120 min, retaining about 80% of initial activity. None of the metal ions tested showed a significant inhibition of protease. Without ions NO_3^+ was observed an increase in the proteolytic activity (11-64%). The use of specific substrates protease inhibitors identified the presence of chymotrypsin-like serine-protease and enzymes. The Suc-Phe-p-Nan proteolysis was inhibited 96.9% by PMSF and 60.9% by TPCK. It shows that Bacillus subtilis is a potencial source of alkaline and termostable serine proteases, which can has several biotechnological applications.

Supported by: LIKA-UFPE

Key words: Bacillus subtilis, characterization, proteases.