Nitration of arachidonic acid modulates PGHS-1 activity

Lucía Bonilla¹, Andrés Trostchansky¹, Valerie B.O'Donnell², Carlos Batthyany³, Lawrence J.Marnett⁴, Rafael Radi¹ and Homero Rubbo¹

¹Departamento de Bioquímica, Facultad de Medicina, UdelaR, Uruguay, ²University of Wales College of Medicine, Cardiff, UK, ³Institut Pasteur de Montevideo, Uruguay, ⁴University of Vanderbilt, TN, USA

Prostaglandin endoperoxide H synthase-1 (PGHS-1) converts arachidonic acid (AA) to prostaglandin G2 (cyclooxygenase activity, COX) and reduces the hydroperoxide at C15 to prostaglandin H2 (peroxidase activity, POX). We have previously demonstrated that AA can be nitrated in the presence of nitrite at pН vielding nitroarachidonic acid (AANO₂). AANO₂ exhibited acidic antiinflammatory properties including down-regulation of nitric oxide synthase-2 expression during macrophage activation. We hypothesize that during PGHS-1 turnover AA-derived radicals can be sequestered by reactive nitrogen species to form AANO₂ which in turn modulates prostaglandin formation, diverting AA from its normal metabolic pathway. Ovine-PGHS-1 incubated in 50 mM phosphate buffer, pH 7.4 at 37°C with peroxides, phenol and AA showed decreased oxygen consumption when AANO₂ was added (K_{i} =141 μ M). Similar results were observed when POX was evaluated using H₂O₂ as peroxide substrate (K_i =135 µM). Enzyme preincubation for five minutes with AANO₂ increased its inhibitory effect (K_i =7.6 µM for POX). To determine if this inhibition was reversible, PGHS-1 was incubated with AANO₂ or the slow reversible inhibitor indomethacin following gel filtration chromatography. In contrast to indomethacin, neither POX nor COX were recovered after gel filtration. Moreover, AANO₂-treated PGHS-1 had a reduced capacity to bind heme, suggesting that AANO₂ selectively labels PGHS-1 near the heme binding site. Nitroalkenes are potent electrophiles capable of covalently modifying cysteine and histidine residues. Mass spectrometry experiments using a QTRAP 2000 (Applied Biosystems) showed that AANO₂ is attached to PGHS-1, suggesting that AANO₂ modifies critical histidine residues with the concomitant release of heme, thus inactivating PGHS-1.

PGHS; nitroalkenes; arachidonate