Trivalent and Hexavalent Chromium as Mediators of Fenton-type Reactions

Lopes, A.C.F. ${ }^{(1)}$; Genaro-Mattos, T.C. ${ }^{(1,2)}$; Alonso, A. ${ }^{(3)}$; Hermes-Lima, M. ${ }^{(1)}$. ${ }^{1}$ Oxyradical Research Group, IB-UnB; ${ }^{2}$ IQ-UnB, Brasília, ${ }^{3}$ IF-UFG, Goiânia, Brazil

Chromium is an important component of human nutrition due to its participation in the insulin metabolism. Nevertheless, literature commonly reports $\mathrm{Cr}(\mathrm{VI})$ as a toxic and carcinogenic element both in vivo and in vitro. Previous studies from our group showed the capacity of trivalent chromium in slowly generating ${ }^{\circ} \mathrm{OH}$ by reacting with $\mathrm{H}_{2} \mathrm{O}_{2}$ in vitro (SFRR Meeting, 2005, abstract 173-1). This study further investigates the potential and mechanisms of trivalent and hexavalent chromium to mediate oxyradical formation in the presence of $\mathrm{H}_{2} \mathrm{O}_{2}$. We have already shown that free radical damage to 2-deoxyribose (2-DR) is much faster when mediated by $\mathrm{Cr}(\mathrm{VI})(<1 \mathrm{~min}$ to saturate 2-DR damage) than by $\mathrm{Cr}(\mathrm{III})$, in which the reaction lasts for more than 4 days (SBBq-2008, abstract T-69). These reactions equally depend on the metal concentration and on the presence of $\mathrm{H}_{2} \mathrm{O}_{2}$. Recent results demonstrate that saturation of $\mathrm{Cr}(\mathrm{VI})$-mediated 2-DR damage occurs at $0.5 \mathrm{mM} \mathrm{H}_{2} \mathrm{O}_{2}$. However, in systems containing $\mathrm{Cr}(\mathrm{III})$ saturation is not observed up to $5 \mathrm{mM} \mathrm{H} \mathrm{H}_{2}$. Moreover, 2-DR damage induced by $50 \mu \mathrm{M} \mathrm{Cr}$ (III) or $50 \mu \mathrm{M} \mathrm{Cr}(\mathrm{VI})$ (in the presence of $\mathrm{H}_{2} \mathrm{O}_{2}$) produced A_{532} values of 0.076 and 0.204 , respectively. When $\mathrm{Cr}(\mathrm{III})$ and $\mathrm{Cr}(\mathrm{VI})$ were incubated together 2-DR damage resulted in A_{532} of 0.279 , which is the sum of A_{532} values produced by the individual chromium forms. These results indicate that each chromium form Cr (III) and $\mathrm{Cr}(\mathrm{VI})$ - act independently in promoting oxyradical formation and 2-DR degradation. Possibly, intermediate and unstable forms of chromium, such as $\mathrm{Cr}(\mathrm{II}), \mathrm{Cr}(\mathrm{IV})$ and/or $\mathrm{Cr}(\mathrm{V})$, participate on the mechanism of ${ }^{\circ} \mathrm{OH}$ production. This hypothesis is currently under evaluation by EPR methods. Acknowledgments: Redoxoma-CNPq, CNPq. Keywords: Oxidative stress; Free radical; Hydroxyl radical.

