Singlet Molecular Oxygen Generated by the reactions of Ozone with 2'-Deoxyguanosine and Polyamines.

Motta, F.D¹.; Miyamoto,S¹.; Martinez G.R^{1,2}.; Medeiros, M.H.G¹.; Di Mascio,P¹.

¹ Universidade de São Paulo, ²Universidade Federal do Paraná

Ozone (O_3) is a potent oxidant that exerts its biological action either directly and/or indirectly. Significant amounts of O_3 can be formed in urban environments. It is well known that in O_3 reactions, singlet molecular oxygen (1O_2) may be formed in high yields. The toxicity of O_3 appears to be due to its ability to promote oxidative damage to important biomolecules. It has been established that O_3 is a powerful mutagenic agent, and the most observed mutation is G:C transversion. This mutation is typical of reactive oxygen species, such as (1O_2). However, the mechanisms by which ozone causes DNA damage have not yet been fully elucidated. In the present work, we investigated the possibility of 1O_2 production during interaction of O_3 with the DNA components (dGuo, dAdo, dCyd and dThd) and also with polyamines. The generation of 1O_2 was monitored by the detection of its chemiluminescence at 1270 nm. The results show a preferential generation of 1O_2 in the reaction of O_3 with purine base when compared with the lower yields obtained with pyrimidine components. The generation of 1O_2 during the reaction of O_3 with polyamines, is pH dependent, being favored in alkaline pH.

Through the HPLC-ESI-MS/MS technique, it was possible to detect some dGuo oxidation products, such as, 8-oxodGuo, Oxazolone, Imidazolone, and Spiroiminodihydantoin. These results indicate that O_3 interacts with dGuo generating 1O_2 , which can further react with dGuo increasing the yield of oxidized products.

Financial Support: FAPESP; CNPq; INCT de Processos Redox em Biomedicina - Redoxoma and UNESCO L'OREAL.

Keywords: Ozone, Singlet Oxygen, 2'-Deoxyguanosine and Polyamines.