Hexokinase Modulates Reactive Oxygen Species Accumulation by Substrate Affinity In Electron Transport System.

Camacho-Pereira, J. and Galina, A. Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

Mitochondrially bound hexokinase ($\mathrm{mt}-\mathrm{HK}$) present in plants and mammals recycles ADP trough inner mitochondrial membrane leading to a decrease in membrane potential (? ? m) and reactive oxygen species (ROS) production in potato tuber mitochondria (PTM) and rat brain mitochondria (RBM). The mt-HK activity is capable to decrease ?? m stimulating the oxygen consumption avoiding ROS formation. This effect was demonstrated using succinate. Here we evaluated the antioxidant mechanism of mt-HK in PTM or RBM using other substrates of ETS. In PTM, ROS was measured using succinate, pyruvate/malate (PM) and NADH. Glucose prevents ROS accumulation by 79% with succinate and 48% with NADH as respiratory substrates. Glucose stimulates respiration ten-fold higher using succinate or NADH than using PM as substrate. The concentration dependence for NADH to external NADH dehydrogenase (NADHdh) was increased ten-fold by 0.3 mM ADP and 5 mM glucose decreasing the catalytic efficiency of PTM respiration (Vmax $/ \mathrm{K}_{\mathrm{M}}$) in 26%. In the presence of $1 \mu \mathrm{M}$ FCCP, the apparent K_{m} increased only two times. For succinate dehydrogenase (SDH) the mt-HK activity increased four times the K_{m} and the catalytic efficiency was reduced in 32%. In RBM the increase in K_{m} was the same as that observed for PTM but the catalytic efficiency reduces 60%. The mt-HK activity modulates ROS formation in a process that includes alterations on substrate affinities of NADHdh and SDH either in PTM and RBM. The avoidance of ROS formation by mt-HK activity occurs by selective modulation of substrates affinities for ETS via ? ? m , but not exclusively related to a decrease in? ? m itself.

Key words: hexokinase, respiratory chain, reactive oxygen species. Support: CNPq, FAPERJ.

