Structural Studies with a BthTX-I a Lys49-PLA ${ }_{2}$ from Bothrops jararacussu S nake Venom Crystallized In Different Temperatures

Marchi-Salvador, D.P..$^{1,2}$, Salvador, G.H.M. ${ }^{2}$, Silva, M.C.O. ${ }^{2}$, Soares, A.M. ${ }^{1}$, Fontes, M.R.M. ${ }^{2}$

${ }^{1}$ Depto. de Análises Clínicas, Toxicológicas e Bromatológicas, FCFRP-USP, Ribeirão Preto-SP, Brasil. ${ }^{2}$ Depto. de Física e Biofísica, IB -UNESP, Botucatu-SP, Brasil;

Phospholipases $A_{2}$ are among the main components of Bothrops venoms responsible for disruption of cell membrane integrity via hydrolysis of its phospholipids, culminating with cell death. Lys49PLA 2 are catalytically inactive on artificial substrates yet maintain cytolytic and myotoxic activities and retain the ability to disrupt the integrity of both plasma membranes and model lipid bilayers by a poorly understood $\mathrm{Ca}^{2+}$-independent mechanism. Botropstoxin-I or BthTX-I is the main protein of Bothrops jararacussu venom. BthTX-I is a basic myotoxic Lys49-PLA ${ }_{2}$, which is catalytically inactive on artificial substrates, but promotes blockade of neuromuscular transmission. Here, we report the crystallization experiments in five different temperatures, X-ray diffraction data collection, structure elucidation and preliminary analysis studies. All crystals were obtained by hanging-drop vapour-diffusion method using similar crystallization conditions but with different temperatures ( 277 K to 308 K ). X-ray diffraction data were collected at a wavelength of $1.425 \AA$ at LNLS (Campinas, Brazil) and processed using the HKL2000 program in the range of 1.5 to $2.8 \AA$ resolution. The crystals belong to four different space groups and have two different oligomeric conformations: monomeric and dimeric. This systematic study may improve the knowledge about the oligomeric conformation changes suffer by $\mathrm{PLA}_{2} \mathrm{~S}$ and the influence of physico-chemical conditions in the crystallization process of this class of proteins.

Keywords: Bothrops jararacussu, Bothropstoxin-I, Phospholipase A2 Homologue, Physico-Chemical Conditions and Snake Venom.
Financial support: FAPESP, CNPq and LNLS.

