Ontogeny of osmoregulation in *Macrobrachium amazonicum:* K⁺phosphatase activity of gill tissue of juveniles

<u>Bezerra TMS</u>¹, Masui DC¹, Augusto A³, McNamara JC², Furriel RPM¹, Valenti WC³ and Leone FA¹.

Departamento de ¹Química and ²Biologia - FFCLRP/USP. 14040-901. Ribeirão Preto, SP. ³Departamento de Biologia Aplicada à Agropecuária – FCAV/UNESP. 14884-900. Jaboticabal, SP.

(Na,K)-ATPase from the gill tissue of the freshwater shrimp Macrobrachium amazonicum, is directly involved in osmoregulation process, and this enzyme plays an important role in ammonium excretion, a vital process for these animals. Juveniles were obtained from Macrobrachium amazonicum juvenile supplied by FCAV/UNESP prawn hatchery (Jaboticabal, SP), and qill microsomes were prepared according to Garçon et al. (Comp. Biochem. Physiol. 147A: 145-155, 2007). K⁺-phosphatase activity was assayed using pnitrophenylphosphate (PNPP) as the substrate. PNPP stimulated the K+phosphatase activity (PNPPase activity) according to Michaelis-Menten kinetics with V= 54.88 U/mg and with K_{M} = 1.25 mM through. Magnesium (V= 43.14 U/mg; $K_{0.5}$ = 0.73 mM; n_H = 1.3) and potassium ions (V= 27.82 U/mg; $K_{0.5}$ = 1.62 mM; n_{H} = 1.8) modulated the enzyme activity through site-site interactions. Ammonium ions alone also stimulated the K⁺-phosphatase activity through a single saturation curve according to cooperative kinetics (n_H= 2.6). Maximal activity for NH_4^+ stimulation was V=27.6 U/mg and $K_{0.5}$ of 7.05 mM. In the presence of different K⁺ concentrations (1 to 5 mM), an increase of about 3-fold (K_{0.5} decreased from 4.59 mM to 1.5 mM, respectively) was observed for enzyme stimulation by NH₄⁺. Contrary, the stimulation of the enzyme by K⁺ in the presence of different concentrations of NH₄⁺ (0 to 50 mM) resulted in a slight decrease of enzyme for K^+ ($K_{0.5}$ decreased from 1.7 mM to 2.2 mM). in the presence of 5 and 10 mM NH₄⁺, respectively). Ouabain inhibited up to 80% the total PNPPase activity, and the calculated K₁ estimated for K⁺-phosphatase inhibition was 59.4 µM. These results are inedited and might contribute to the understanding of the role of (Na,K)-ATPase during the ontogeny of osmoregulation of these animals.

Financial Support: FAPESP and CNPq.