Ang-(3-4), Generated from Ang II through an ACE-dependent Pathway, Suppresses Inhibition of Renal Plasma Membrane Ca²⁺-ATPase by Ang II

<u>Axelband, F.</u>¹; Dias, J.¹; Ferrão, F.M.¹; Lara, L.S.²; Vieyra, A.¹ ¹Laboratório de Físico-Química Biológica Aída Hassón-Voloch/IBCCF/UFRJ;²Laboratório de Farmacologia Renal/ICB/UFRJ

We previously demonstrated that 10⁻¹⁰ M angiotensin II (Ang II) inhibits the Ca²⁺-ATPase resident in the basolateral membranes of kidney proximal tubule cells (BLM) in an AT₁R and AT₂R dependent-pathway, whereas high Ang II concentration (5 \times 10⁻⁷ M) led to the recovery of the Ca²⁺ pump with simultaneous formation of two Tyr-containing metabolites. Therefore our objectives were dentify these metabolites, the angiotensin receptor(s) and the transdution cascade implicated in this reactivation process, as well as the peptidases involved in the metabolites generation. The HPLC analysis reveal that Tyr and angiotensin-(3-4) [Ang-(3-4)] retention times matches with those of angiotensin-derivatives and that the dipeptide blocks the Ca²⁺-ATPase inhibition by Ang II ($pA_{1/2} \sim 15.5$), an effect that was abolished by an AT₂R antagonist. Moreover, Ang-(3-4) seems to impair the inhibitory effect of Ang II through dissociation of constitutive AT1R/AT2R heterodimers, which are also preserved with 10⁻¹⁰ M Ang II. Since Ang-(1-7) was formed after 2 min of BLM incubation with 5 x 10⁻⁷ M Ang II, the first enzymatic route studied is the Ang II \rightarrow Ang-(1-7) conversion where a carboxypeptidase Plummer's-sensitive (CP-P's sensitive) appears to be the key enzyme. Following the sequence, it is demonstrated that the Ang-(1-7) \rightarrow Ang-(1-5) conversion depends on ACE activity and Ang-(1- $5) \rightarrow Ang - (1 - 4) \rightarrow Ang - (3 - 4)$ depends on another CP-P's sensitive. The metabolization of Ang II also requires aminopeptidases and neprilysin activities. In summary, it can be concluded that BLM have a complete peptidases machinery able to form Ang-(3-4) – from Ang II – in the vicinity of the Ca²⁺-ATPase that may act as a physiological regulator of active Ca²⁺ fluxes by modulating angiotensin receptors interactions and by activating an AT₂R-linked signaling cascade.

Key words: Ang-(3-4), angiotensin metabolism, basolateral membranes of kidney proximal tubules, plasma membrane calcium ATPase, peptidases Supported by: FAPERJ and CNPq