Physalin B inhibits *Rhodnius prolixus* hemocyte phagocytosis and microaggregation by activation of endogenous PAF-acetylhydrolase activities

<u>Castro,D.P</u>.¹, Figueiredo,M.B.¹, Genta,F.A.^{1,3}, Ribeiro,I.M.², Tomassini,T.C.B.², Azambuja,P.^{1,3}, Garcia,E.S.^{1,3}

danicastro@ioc.fiocruz.br

¹IOC-FIOCRUZ; ²FarManguinhos-FIOCRUZ; ³INEM, CNPq

The effects of physalin B (a natural secosteroidal chemical from *Physalis* angulata, Solanaceae) on hemocyte phagocytosis and microaggregation, in experiments using 5th-instar larvae of *Rhodnius prolixus*, were investigated. Hemocyte phagocytosis and microaggregation are induced by the platelet-activating factor (PAF) or arachidonic acid (AA) and regulated by phospholipase A₂ (PLA₂) and PAF acetyl hydrolase (PAF-AH) activities. Hemocyte phagocytic activity and formation of hemocyte microaggregates were strongly blocked by oral treatment of this insect with physalin B (1 µg/mL of blood meal). These inhibitions, induced by physalin B, were reversed by exogenous arachidonic acid (10 µg/insect) or PAF (1 µg/insect) applied by hemocelic injection.

We measured the activities of PLA₂ and PAF-AH in cell-free plasma and hemocytes of control and physalin fed *R. prolixus* nymphs. Total plasmatic PLA₂ activity showed a significant (P<0.001) increase (1.5x) with physalin treatment, mainly due to the increase (2x, P<0.001) in the iPLA₂ form, as the cPLA₂ did not change significantly (P>0.05). PAF-AH showed a dramatic increase in insects that were fed with physalin (6x, P<0.005).

Following the treatment with physalin B, the hemocyte PLA_2 activity was not affected. Neither the total PLA_2 nor any of PLA_2 isoforms (i PLA_2 or $cPLA_2$) showed any significant differences between insects treated with physalin and the controls (P>0.05). In these hemocyte samples a very low PAF-AH activity was detected and this enzyme was more active (3x) in the physalin treated insects when compared to the controls (P<0.05).

These results show that physalin B inhibits hemocytic activity by depressing insect PAF analogous (iPAF) levels in hemolymph and confirm the role of PAF-AH in the cellular immune reactions in *R. prolixus*.

Supported by FAPERJ, CNPq and FIOCRUZ

Keywords: hemocyte, PAF, physalin, phospholipase A2, *Rhodnius prolixus*