Metabolism and Acute Toxicity of the Mesoionic Compound M1D

Silvia Romão ${ }^{\text {a }}$, Silvia M.S.C. Cadena ${ }^{\text {a }}$, Juliana C. Amorim ${ }^{\text {a }}$, Stelia C. MéndezSánchez ${ }^{\mathrm{a}}$, Aurea Echevarria ${ }^{\mathrm{b}}$, Edson F. Silva ${ }^{\mathrm{b}}$, Maria Eliane M. Rocha ${ }^{\mathrm{a}}$, Guilhermina R. Noleto ${ }^{a}$, Eva G. S. Carnieri ${ }^{\text {a }}$, Glaucia R. Martinez ${ }^{\text {a }}$, Maria Benigna M. Oliveira ${ }^{\text {a }}$
${ }^{\text {a }}$ Departamento de Bioquímica e Biologia Molecular, UFPR; ${ }^{\text {b }}$ Departamento de Química, UFRRJ.

The mesoionic compound 4-phenyl-5-[4-nitrocinnamoyl]-1,3,4-thiadiazolyl-2phenylamine chloride (MI-D) has been shown antitumor activity and antiinflammatory action in vivo in rats and mice. This study investigated aspects of metabolism and toxicological effects of MI-D. MI-D metabolism was investigated using microsomal fraction of mice hepatocytes induced with phenobarbital and detection of possible products of metabolism was performed by HPLC. It was shown a possible soluble product of MI-D metabolism (MET) in 7.7 min of chromatographic run, which increased along incubation time. MET spectrum was similar to MI-D when examined in the range between 200-750 nm. Analysis by ESI+/MS of the purified compound by HPLC indicated that the product has four additional hydroxyl groups ($\mathrm{m} / \mathrm{z}=465$) compared to MI-D ($\mathrm{m} / \mathrm{z}=401$). The kinetic parameters of reaction were determined by fluorescence detection of the product, with estimated values of $\mathrm{Vmax}=1.5 \pm 0.4$ units fluorescence/s and Km $=19.5 \pm 4.5 \mu \mathrm{~mol} . \mathrm{L}^{-1}$. MET was detected in blood and urine of mice after 1 and 3 h of treatment with MI-D ($50 \mathrm{mg} / \mathrm{kg}$). The estimated value of LD_{50} in mice for MI-D administered intraperitoneally was $181.2 \mathrm{mg} / \mathrm{kg}$. Histological analysis of organs of the peritoneal cavity from survived animals, showed regions of serous membrane fusion of different organs and regions with accumulation of MI-D, and it was identified large leukocyte infiltration and granulomas. These results provide a breakthrough in the research of biological effects of this compound and also a methodological support for future pre-clinical studies. Supported by CNPq and CAPES.

