Anti-inflammatory and Analgesic Properties of a (1 ® 3),(1 ® 6)-Linked **b**-Glucan Isolated from *Pleurotus pulmonarius*

Smiderle, F.R.¹, Olsen, L.M.¹, Carbonero, E.R.¹, Baggio, C.H.², Freitas, C.S.², Marcon, R.², Santos, A.R.S.², Gorin, P.A.J.¹, <u>Iacomini, M.¹</u>

¹ Dpto. de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil; ² Dpto. de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, Brazil

A glucan was extracted with hot water from the basidiomycete *Pleurotus* pulmonarius and shown to have a $(1\rightarrow 3)$ -linked β -D-glucopyranosyl main-chain substituted at O-6 of every third unit by single β-D-glucopyranosyl non-reducing end units. This was shown by mono- and bidimensional nuclear magnetic resonance (NMR) spectroscopy, methylation analysis, and a controlled Smith degradation. The glucan was tested for its effects on the acetic acid-induced writhing reaction in mice. It caused a marked and dose-dependent antiinflammatory response, demonstrated by the inhibition of leukocyte migration to injured tissues (82 \pm 6%) with an ID₅₀ of 1.19 (0.74-1.92) mg/kg. Furthermore, animals previously treated with the glucan (3 mg/kg i.p.), showed a reduction of 85 \pm 5% of writhes, after receiving the acetic acid injection. h the formalin test, the glucan (3-30 mg/kg, i.p.) also caused significant inhibition of both the early (neurogenic pain) and the late phases (inflammatory pain) of formalin-induced licking. However, it was more potent and effective in relation to the late phase of the formalin test, with mean ID₅₀ values for the neurogenic and the inflammatory phases of >30 and 12.9 (6.7-24.6) mg/kg and the inhibitions observed were 43 \pm 5% and 96 \pm 4%, respectively. These data showed that the glucan had potent antiinflammatory and analgesic (antinociceptive) activities, possibly by the inhibition of pro-inflammatory cytokines. Supported by CNPq, and Pronex-Carboidratos.

Keywords: *Pleurotus pulmonarius*; mushroom; β -glucan; antiinflammatory and analgesic effects.