PHYSICAL-CHEMICAL CHARACTERIZATION AND STABILITY STUDY OF ALPHA -TRYPSIN AT PH 3.0 BY DIFFERENTIAL SCANNING CALORIMETRY

Santos, A. M. C¹., Santana, M. A¹., Gomide, F.T.F¹., Miranda, A. A. C²., Oliveira, J. S¹., Vilas Boas F.A.S¹., Vasconcelos, A, B³, Teixera, K. N¹, Biondi, I². , Bemquerer, M. P⁴, Santoro, M. M¹.

¹Departamento de Bioquimica e Imunologia, ICB, UFMG, MG, Brazil; ²Departamento de Ciências Biológicas, UEFS, BA, Brazil; ³Embrapa Recursos Genéticos e Biotecnologia, PqEB - Brasília, DF, Brazil.

 α -Trypsin is a serine-protease with a polypeptide chain of 223 amino acid residues and six disulfide bridges. It is a globular protein with predominance of antiparallel β-sheet secondary structure and it has two domains with similar structures. In the present work, a stability study of α -trypsin in the acid pH range was performed and physical-chemical denaturation parameters were measured by using differential scanning calorimetry (DSC). The α -trypsin has a shelf-life (t_{95%}) of about ten months at pH 3.0 and 4 °C and its hydrolysis into the w-trypsin isoform is negligible during six months as monitored by mass spectrometry (Micromass Q-ToF). The observed $\Delta H_{cal}/DH_{vH}$ ratio is close to unity for α -trypsin denaturation, which suggests the occurrence of a two-state transition, devoid of molten-globule intermediates. At pH 3.0, α -trypsin unfolded with T_m = 325.9 K and ΔH = 99.10 kcal mol⁻¹, and the change in heat capacity between the native and unfolded forms of the protein was estimated to be 1.96 \pm 0.18 kcal mol¹ K⁻¹. The stability of α trypsin calculated at 298 K and at pH 3.0 was $DG_{\cup} = 6.10$ kcal mol⁻¹. These values are in the range expected for a small globular protein. These results show that the thermodynamic parameters for unfolding of β -trypsin do not change substantially after its conversion to α -trypsin.

Key words: stability, thermodynamics, trypsin, calorimetry