FUNCTIONAL CHARACTERIZATION OF A NOVEL ARGININE EXCHANGER FROM <u>TRYPANOSOMA CRUZI</u>

Henriques, C¹; Fairman, WA²; Catanho, M¹; Degrave, WM¹ and Amara, SG²

¹Departamento de Bioquímica e Biologia Molecular, IOC- FIOCRUZ, Rio de Janeiro-RJ, Brazil; ²Department of Neurobiology, University of Pittsburgh, Pittsburgh- PA, USA

Trypanosoma cruzi the aetiological agent of Chagas disease undergoes a series of morphological and physiological adaptations to survive within the insect and mammalian hosts. Thus, transporters can act as sensors of nutrient availability, play a role in cellular homeostasis and metabolism. T.cruzi can not synthesize arginine, they have to get arginine from the environment. Therefore, our purpose was the functional characterization of a novel arginine transporter. TcCAT1.1, in heterologous systems. Interestingly, TcCAT1.1 displayed lower identity to human arginine transporters (hCAT), 10% identity and 23% similarity at the aminoacid level, when compared to N- system NAT-1. Substrate saturation curves were performed in S.cerevisiae and an apparent K_m of 85 \pm 36,37 μM was inferred for ^βH]-arginine. Competition assays were performed with 100 fold competitor over [³H]-arginine. From the compounds tested, uptake was significantly inhibited by canavanine (70%). Ornithine, showed low affinity for TcCAT1.1, 10% inhibition of $[^{3}H]$ -arginine uptake, and Km of 1,7 \pm 0,24 mM, similar to other cationic aminoacids. Trans-stimulation was observed in X.laevis oocytes expressing TcCAT1.1 pre-loaded with arginine, whose [³H]-arginine uptake increased 7 fold. Oocytes pre-loaded with [³-H]- arginine displayed 16 fold higher efflux of [³H]-arginine, than control. *T.cruzi* super-expressing *TcCAT1.1* and *GFP-TcCAT1.1* are being generated to explore the exchanger mechanism and localization into the protozoa.

Supported by CNPq; FAPERJ; University of Pittsburgh Key words: Arginine, transporters; T.cruzi