INTERACTION BETWEEN RECOMBINANT SERCA HYDROPHILIC DOMAINS AND P-TYPE ATPASES: EFFECTS ON THE ATPASE ACTIVITY OF SERCA, PMCA AND NA $^+$ K $^+$ ATPASE

Santos, D.F.¹; Freire, M.M.¹; <u>Angeli, R</u>.¹; Cortez, V.F¹; Albernaz, F.P.¹; Almeida, W.I.¹; Verjovski-Almeida, S.²; Almeida, F.C.L.¹; Valente, A.P.¹; Carvalho-Alves, P.C.¹

¹Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro. ²Instituto de Química, Universidade de São Paulo.

SERCA (sarco(endo)plasmic reticulum Ca-ATPase), PMCA (plasma membrane Ca-ATPase) and Na⁺K⁺ ATPase are the most important pumps involved in fine tuning the ionic levels inside mammalian cells. SERCA has the better understood molecular mechanism of action, where Ca²⁺ is translocated to the lumen of the endoplasmic reticulum involving major conformational rearrangements among three cytoplasmic domains: actuator (A), nucleotide-binding (N) and phosphorylation (P). The A domain is believed to undergo movement during Ca²⁺ transport coupled to enzyme phosphorylation, interacting with the N and P domains. In previous studies, SERCA A domain recombinant (rSL) stimulated the ATP hydrolysis activity of SERCA1 by uncoupling the Ca²⁺ transport, without changing integrity of the membrane and stimulated PMCA activity three-fold, at saturating [Ca²⁺], in the absence of CaM. Here we show that rSL is able to stimulate approximately two fold the purified NA⁺ K⁺ ATPase. Because the high homology in A domains, these results suggest a general model for the interplay of N, P and A domains during the catalytic cycle for all three enzymes.

Supported: CNPq and FAPERJ

Key words: P-ATPases, recombinant A domain