SB-431542, A TRANSFORMING GROWTH FACTOR **b** INHIBITOR, IMPAIRS TRYPANOSOMA CRUZI INFECTION IN CARDIOMYOCYTES AND PARASITE CYCLE COMPLETION

Waghabi, M. C.^{1,2}, Keramidas, M.³, Calvet, C.M.⁴, Meuser, M.², Soeiro, M.N.², Mendonça-Lima, L.¹, Araújo-Jorge, T.C.² Feige, J.J.³ and Bailly, S.³.

¹Laboratorio de Genomica Funcional e Bioinformática, DBBM, IOC, FIOCRUZ- Rio de Janeiro, Brasil; ²Laboratorio de Biologia Celular, DUBC; ³ INSERM, EMI 01-05 CEA- DRDC /ANGIO, Grenoble, France; ⁴Laboratorio de Ultraestrutura Celular, DUBC

The anti-inflammatory cytokine, transforming growth factor β (TGF- β), plays an important role in Chagas disease, a parasitic affection caused by the protozoan *Trypanosoma cruzi* (*T. cruzi*). The aim of the present study is to investigate the use of SB- 431542, an inhibitor of the TGF- β type I receptor (ALK5), during the in vitro *T. cruzi* infection in cardiomyocytes. Our results show that SB-431542 inhibits *T. cruzi*-induced activation of the TGF- β pathway in epithelial cells and in cardiomyocytes. Further, we demonstrate that addition of SB-431542 greatly reduces cardiomyocyte infection by *T. cruzi*. Finally, SB-431542 treatment also strongly reduces the number of parasites per infected cells and the trypomastigote differentiation and release. Taken together, these data further confirm the major role of the TGF- β signaling pathway in both *T. cruzi* infection and *T. cruzi* cell cycle completion. Our present data demonstrate that small inhibitors of the TGF- β signaling pathway might be very useful pharmacological tools for the treatment of Chagas disease. Acknowledgements: INSERM/ FIOCRUZ, Faperj/ FIOCRUZ, CEA and CNPq. Key words: TGF- β , SB 41542, *T. cruzi* infection.