INVOLVEMENT OF K⁺- CHANNELS IN THE ANTINOCICEPTION CAUSED BY

DIPHENYL DISELENIDE IN THE FORMALIN TEST

Larissa G. Pinto, Cristiano R. Jesse, Lucielli Savegnago, João B. T. Rocha, Gilson Zeni, Cristina W. Nogueira

Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.

Diphenvl diselenide. simple organochalcogenide, а possesses antinociceptive and anti-inflammatory activities in mice and rats. The present study investigated the antinociceptive effect caused by diphenyl diselenide in formalin test and also the possible involvement of k⁺ channels in its the antinociceptive activity. Diphenyl diselenide injected orally (p.o.) in mice caused antinociception against the first and second phase of formalin test, with mean ID₅₀ values of 25.55 (9.52 - 68.58) and 6.45 (1.75 - 23.8) mg/Kg, respectively. This compound also significantly inhibited $(43 \pm 4\%)$ the mice paw oedema induced by intraplantar injection (i.pl.) of formalin. Moreover, (PhSe)₂ (10 mg/Kg), given 5 min after the formalin injection, revealed an significant inhibition $(71 \pm 6\%)$ in the second phase of the formalin-induced pain, whereas the prophylactic treatment caused more intense inhibition (89 \pm 3%). The antinociceptive effect caused by (PhSe)₂ (10 mg/Kg, p.o.) was reversed by intratechal (i.t.) injection of several K^t channels blockers such as apamin and charybdotoxin (large- and small-conductance Ca2+activated K⁺ channel inhibitors, respectively), tetraethylammonium (TEA, nonselective voltage-dependent K⁺ channel inhibitor), but not glibenclamide (ATPsensitive K^+ channel inhibitor). These results suggested the participation K^+ channels on the antinociceptive effect caused by diphenyl diselenide.