BIOLOGICAL EFFECT-DRIVEN BIOCHEMICAL ASSESSMENT OF THE SKIN SECRETION OF PHYLLOMEDUSA HYPOCHONDRIALIS

Conceição K¹, Konno K¹, Melo RL¹, Lima C¹, Bruni, FM¹, Pareja-Santos A¹, Antoniazzi MM², Jared C², Gilio JM¹, Silva CA¹, Conceição IM³, Sciani J³, Lopes-Ferreira M¹, Borella MI⁴, Prezoto B³, Camargo ACM¹, Pimenta DC¹

¹LETA - CAT/CEPID; ²Dept. Celullar Biology, ³Pharmacology Lab., Butantan Institute, ⁴ICB/USP, SP.

Given the diversity of compounds known from frog skin, our work focus on the depiction of the main physiopathological events and the pattern of the local acute inflammatory response targeted by the skin secretion in mammals as well as the identification of novel bioactive peptides present in P. hypochondrialis skin secretion. The secretion induced several toxic effects in mice and inflammatory reaction characterized by the release of IL-1, IL-6, TNF-alpha, KC, MCP-1, LTB 4 and PGE(2). We also presented the isolation and characterization of two antimicrobial peptides; one novel bradykinin potentiating-peptide (BPP) and three bradykinin-like peptides. These antimicrobial peptides (PS7 and DPh1) were effective over pathogenic bacteria, presenting no hemolytic activity. The new BPP, named Phypo Xa is the first canonical BPP to be found not only in the frog skin but also in any other natural source other than the snake venoms. Also, is able to potentiate bradykinin activities in vivo and in vitro, competitively inhibit ACE and interact with the ACE testicular isoform. All these finds demonstrate the efficiency of the biological effect-driven biochemical and proteomic approach to the finding of new molecules.

Supported by FAPESP, CNPq and CAPES