MECHANISM OF ACETYLCHOLINE-INDUCED CALCIUM SIGNALING, PROLIFERATION AND DIFFERENTIATION EFFECTS DURING *IN VITRO* NEURONAL DIFFERENTIATION OF EMBRYONAL CELLS

Gomes, K.N.¹, Resende, R.R.^{1*}; Britto, L.R.G.²; Ulrich, H.¹

¹Departamento de Bioquímica, Instituto de Química; ²Departamento de Fisiologia e Biofísica, Instituto Ciências Biomédicas, Universidade de São Paulo, Brazil. *Corresponding author.

Muscarinic (mAChRs) and nicotinic acetylcholine receptors (nAChRs) are involved in various physiological processes, including neuronal development. We provide evidence for expression of functional nAChRS and mAChRs during differentiation of P19 embryonic carcinoma cells, as in vitro model of early neurogenesis. We have detected expression and activity of α_2 - α_7 , β_2 , β_4 nAChR and M1-M5 mAChR subtypes during neuronal differentiation. Nicotinic $\alpha 3$ and β_2 subunit gene expression was induced by addition of retinoic acid to P19 cell cultures. Gene expression of α_2 , α_4 - α_7 , β_4 nAChR subunits decreased during initial differentiation and increased when differentiating cells underwent final maturation. Receptor response of nicotinic agonist-evoked Ca²⁺-flux was observed in embryonic and neuronal-differentiated cells. Muscarinic receptor response was merely present in undifferentiated cells and increased during neuronal differentiation. The nAChRinduced [Ca²⁺]; response in undifferentiated cells was due to Ca²⁺-influx. In differentiated neurons, besides Ca²⁺-influx through nAChR and voltage-gated Ca²⁺ channels, nAChR stimulation also induced Ca²⁺-release from ryanodine- and IP₃dependent intracellular stores. In both cell states, a7 subtype was the main mediator for Ca²⁺-fluxes responsible for inhibiting proliferation of embryonic cells and inducing differentiation to neural progenitor cells. M2 and M3 were the principal mediators for Ca²⁺-mobilization during final neuronal maturation of P19 cell and participate on the neuronal differentiation. Acknowledgements: FAPESP, CAPES, CNPq.

Keywords: neuronal differentiation; proliferation; embryonic cells, acetylcholine receptors.