STRUCTURE OF GUM EXUDATE POLYSACCHARIDES FROM THE TRUNK AND FRUIT OF THE PEACH TREE (*PRUNUS PERSICA*)

Simas, F.F.^{1*}, Gorin, P.A.J.¹, Wagner, R.¹, Sassaki, G.L.¹, Bonkerner, A.², Iacomini, M.¹

¹Departamento de Bioquímica e Biologia Molecular, UFPR, C.P. 19046, CEP 81531-980, Curitiba, PR, Brasil. ²IAPAR, Palmas, PR, Brasil.

The gum exudate polysaccharides from the trunk (PPNA) and fruit (PPNF) of the peach-tree consisted of Ara, Xyl, Man, Gal, and uronic acids (GlcpA:4-Me-GlcpA 2:1 for PPNA) in a 36:7:2:42:13 and 32:13:2:33:20 molar ratio, respectively. NMR and methylation analyses showed many similarities, characterizing then as acidic arabinogalactans. Methylation analysis of PPNA showed nonreducing end- (20%), 3-O- (6%), and 5-O-substituted (14%) units of Araf and nonreducing end-units of Xylp (13%). The Galp units were 3,6-di-O- (19%) and 3,4,6-tri-O-substituted (14%). Its ¹³C-NMR spectrum had C-1 signals at δ 107.5-109.5, a main one at δ 103.2 ($J_{C-1/H-1} = 160$ Hz), at δ 101.5 ($J_{C-1/H-1} = 178$ Hz), and at δ 100.7 ($J_{C-1/H-1} = 173$ Hz), from a-L-Araf, ß-D-Galp, β -Arap (or α -D-Xylp), and α -D-Manp, respectively. A controlled Smith degradation of PPNA followed by partial hydrolysis under stronger conditions gave rise a polysaccharide (PPNAS60-20% yield), which had Gal as its major component (85%). Methylation analysis showed 45% of 6-Osubstituted Galp units arising from its core. Its ¹³C-NMR spectrum had a C-1 main signal at δ 103.8 from ß-D-Galp units. Two controlled Smith degradations of PPNA gave a polysaccharide (PPNAS2-0.45% yield) that contained 34% of 3-Osubstituted units of Galp, indicating the presence of (1? 3)-linkages.

Supported by CAPES, PRONEX-Carboidratos, Fundação Araucária.