CELLULAR PRION PROTEN PROTECTS AGAINST SEIZURE IN VIVO

Landemberger, M.C.¹, Machado, C.F.¹, Lobão-Soares, B.², Mallucci G.³, Chesebro, B.⁴, Walz, R.⁵, Martins, V.R.¹

¹LICR, SP, Brazil; ²USP RP, Brazil, ³INN London, UK; ⁴NIA/ID, Hamilton, USA ⁵UFSC, SC, Brazil.

The ablation of the Prion Cellular(PrP^C) gene enhances neuronal excitability of the hippocampus in vitro. We evaluated the contribution of PrP^C levels for seizure administration of kainic acid(KA) sensitivity intraperitoneal pentylenetetrazol(PTZ) in two constitutive PrPC knockout mice(ZPrnp000 and EPrnp^{-/-}),two post-natal PrP^C knockouts(CreTg37 and CreTg46) and their respective wild-type controls(WT) and Tg20 animals that express six times more PrP^C than WT. All Z*Prnp*^{0/0} mice developed seizures after 7.5mgKA/Kg treatment while 12.5mgKA/Kg is necessary to induce this phenotype in 85% of WT animals and 25mgKA/Kg induces seizures in 40% of the Tg20 mice(n=15,p<0.001). At 10mg/kg, KA stimulated seizures in 73% of E*Prnp*^{-/-} mice(n=15) against 7% of controls(n=15,p<0.001) and in 20% of heterozygous(n=20,p=0.287). In CreTg37, 100%(n=10) 10maKA/ka induces seizures against in controls(n=11,p=0.001) and in 80% of CreTg46(n=10) compared with 58% of controls(n=12,p>0.05). The mortality after seizures caused by treatment with 40mgPTZ/Kg was 85% in ZPrnp^{0/0} mice against 20% of WT(p=0.005) and 0% in Tg20 mice(n=10,p<0.001). The mortality was 50% in EPrnp^{-/-} mice and 6% in their respective WT(p=0.035). In CreTg37, the mortality after seizures was 75%(n=12) against 10% of controls(n=10,p=0.004) while 27% in of CreTg46(n=11) died against 20% of their controls(n=10,p=1.0). These data demonstrate that PrPC expression is directly correlated to seizure sensitivity using different lines of PrP^C ablated animals or transgenic mice overexpressing PrP^C. Supported by Fapesp.