RMN STUDIES AND SOLID PHASE SYNTHESIS AS A TOOL FOR STRUCTURAL ELUCIDATION OF NEW BIOACTIVE PEPTIDE FROM THE LATEX OF JATROPHA CURCAS L.

<u>Altei, W. F</u>.¹, Barbosa S.C.², Cilli, E. M², Giannini, M. J.³, Cardoso-Lopes, E. M.³, Young, M. C. M.³, Torres, L. B.³, Bolzani, V. S.¹

¹Núcleo de Bioensaio, Biossíntese e Ecofisiologia de Produtos Naturais (NuBBE), ²Departamento de Bioquímica e Biotecnologia, IQ-UNESP, Araraquara, SP, Faculdade de Ciências Farmacêuticas, Araraquara, SP, ³Instituto de Botânica, secretaria do meio Ambiente, São Paulo, SP.

In a previous study on Euphorbiaceous plant species we have isolated the cyclic peptides labaditin and biobollein from the latex of *Jatropha multifida*. In the course of our investigation, aiming new bioactive cyclic peptides from plants, we have studied the latex of *Jatropha curcas* L. The latex of this species was partitioned with ethyl acetate, fractioned on Sephadex G15, eluted in solid phase extraction; peptide fraction was detected by Cl₂/o-tolidine reagent, and purified by HPLC to yield the novel jatrophidin I (1) and the known pohlianin A (2). The characterization of 1 was performed by amino acid analysis, mass spectroscopy, and 1D and 2D RMN studies, which revealed that the peptide 1 exists as two conformers of a cyclic structure GWLNLLGP. The new peptide was confirmed by synthesis using Fmoc strategy. The isolates 1-2 showed week antifungal effect against the strains of *Candida albicans*, *C. krusei*, *C. parapsilosis* and *Cryptococcus neoformans*, as well as a moderate activity as an acetylcholinesterase inhibitor, when compared with the standards. [FAPESP, CNPq, FINEP]