REGULATORY EFFECTS OF NITRIC OXIDE ON SRC KINASE, P130CAS AND PTPa, MAJOR COMPONENTS OF FOCAL ADHESION COMPLEXES

<u>Curcio¹M</u>, Linares¹ E, Nascimento¹ F, Stern ³ A, Sap ² J, Monteiro¹ H.P ¹Department of Biochemistry UNIFESP/Brazil; ¹Departament of Biochemistry USP/ Brazil; ²University Copenhagen/ Denmark; ³Departament of Pharmacology NYU/ USA

Nitric Oxide (NO) is a free radical able to diffuse across membranes and travel long distances implicated as a signaling molecule in a number of physiologic processes. We showed previously that treatment of fibroblasts with NO donors activates Src Kinase through autophosphorylation at Y416 (FRBM 28: 174; 2000). Src Kinase is constitutively phosphorylated at Y527, and dephosphorylation of Y527 by PTP α is the most well characterized mechanism of kinase activation. Then, we hypothesized that activation of Src by NO was a result of the cooperation between cysteine S-nitrosation and tyrosine phosphorylation. Presently, we describe Snitrosation and phosphorylation of Y416 of Src Kinase in fibroblasts "knock-out" for PTP α exposed to 500 μ M SNAP (NO donor). P130 Cas a Src Kinase substrate was phosphorylated on tyrosine after exposure of these cells to SNAP. On the other hand, in PTP α expressing cells, SNAP stimulated S-nitrosation of Src kinase in a lesser extent. SNAP promoted tyrosine dephosphorylation of p130 Cas in these cells. Furthermore, we found high expression levels of thioredoxin in PTP α expressing cells. In conclusion, the expression of PTP α may determine the extent of S-nitrosation on Src Kinase and the regulation of signal transduction through Src by S-nitrosation.

Acknowledgments: Financial support was provided by FAPESP and CNPq/Milênio.