ALUMINUM INHIBITS YEAST-MYCELIUM TRANSITION AND STIMULATES P-TYPE H⁺-ATPASE IN *YARROWIA LIPOLYTICA*

Lobão, FA^{1,2}; Façanha, AR²; Dutra, KR¹; Okorokova-Façanha, AL¹; Okorokov, LA¹ Lab. de Fisiologia e Bioquímica de Microrganismos¹, Lab. Biologia Celular e Tecidual², CBB, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes-RJ, Brasil.

Yeast has proven to be an excellent system for isolating and characterizing genes responsive to environmental stresses. Yarrowia lipolytica is a dimorphic fungus found in different habitats including soil. Al is a major factor which affects crop productivity in acid soils and also is a neurotoxic agent. Here we used Y. lipolytica to study the mechanisms of AI tolerance and toxicity. We found that AI concentrations which are inhibitory to plants (0.1-1.0 mM AIK(SO₄)₂) did not affect Y.lipolytica growth at pH 4.5 neither induced drastic changes in cell morphology. However, high AI concentrations prevent veast-mycelium transition. Yeast-hyphae transition is a determination factor for pathogenicity of several human fungi including Candida, Cryptococcus and Histoplasma and is controlled by environmental pH in *Candida* and *Yarrowia*. To test whether fungal H⁺-ATPase is a potential target for AI, total membrane vesicles were isolated from cells cultivated in the presence of 1 mM $AIK(SO_4)_2$. They exhibited stimulation of vanadate-sensitive H⁺ transport by ~2-fold but no significant increase in ATPase activity. The data reveal a link between proton homeostasis, resistance towards AI and fungal dimorphism and appoint plasma membrane H⁺ pump as a key factor underlying these processes.

Key words: yeast, aluminum, H⁺-ATPase, dimorphism. Supported by CNPq, FAPERJ, UENF