PROTEOMICAL ANALYSES OF OREOCHROMIS NILOTICUS SKIN SECRETION

Mourot, J. F.¹; Costa, F. T.¹; Farias, L. R.¹; Pelegrini, P. B.¹; Almeida, R. G.¹; Silva, L.P.²; Bloch Jr., C.² and Franco, O. L.¹

¹Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-

DF

²Cenargen, Embrapa, Brasília-DF

*Corresponding Author: <u>ocfranco@pos.ucb.br</u>

The increasing of microorganisms with enhanced resistance to conventional drugs is a severe problem faced in hospitals and health institutes. In order to reduce these typical infections, several peptides have been isolated from animal secretions. In this work, *Oreochromis niloticus* skin secretion, which previously showed anti-protozoa activity, were evaluated utilizing proteomical techniques as two dimensional electrophoresis (2-DE) and MS. Animals were submerged into a salt solution (0.6M NaCl) and submitted to a gently electrical stimulation (10s non continuum pulses). After lyophilization, samples were dialyzed and submitted to 2-DE analyses. 79 spots were resolved with masses ranging from 14 to 66 kDa and pl of 3-11.Among these, 20 peptides were lately identified by MS peptide mass fingerprint, using MASCOT software. Protein identification showed high identity to immunological system proteins from salmon fish (*Salmo salar*) pertaining to MHC classes, which could be involved in defense against pathogens. Further analyzes will be performed in order to confirm if these proteins present antimicrobial activity against micro-organisms that causes infections in humans.

Financial Support: CNPq, CAPES and UCB.