AlF₄⁻ is a potent inhibitor of PMCA that promotes Ca²⁺ occlusion Moreira, O.C., França-Matheus, R. and Barrabin, H.

Instituto de Bioquímica Médica/UFRJ

AICl₃ forms a complex with F known as fluoroaluminate (AIF₄), with structure very similar to H₂PO₄. It is an inhibitor of P-type ATPases (Na, K- ATPase, SERCA and PMCA). In this work we investigated the inhibitory properties of AIF₄ in the PMCA of pig erythrocyte ghosts, relating this inhibition with the occlusion of Ca²⁺. PMCA (1 mg/mL ghost) was preincubated with AIF_4 (mix of 1 mM NaF with different concentrations of AICl₃) and 50 µM ADP at 37 °C. Afterward, membranes were washed and ATPase activity were assayed in media containing 30 μ M Ca²⁺ or 300 μ M EGTA. The difference of both ATPase activities was attributed to PMCA. AlF₄⁻ inhibited irreversibly PMCA in a time-dependent manner. The ions Mg²⁺ and Ca²⁺ seemed to be important to promote this inhibition. The profile of inhibition at Increasing concentrations of AIF₄ (0.5, 2 and 10 μ M) suggests a single site for inhibitor binding. ATP or AMP-PNP in the preincubation protected PMCA against inhibition, suggesting that AIF_4 binds at ATP site of the enzyme. Moreover, 10 μ M AlF₄ promoted Ca^{2+} occlusion when incubated for 30 minutes at room temperature. These findings showed that PMCA is an enzyme that transports Ca²⁺ in a mechanism similar to proposed to SERCA, passing through an intermediary step in its catalytic cycle, in which Ca²⁺ is occluded. Supported by CNPg, CAPES, FAPERJ.