Gill microsome (Na,K)-ATPase of Callinectes ornatus crab

<u>Garçon DP</u>; Masui DC; Furriel RPM; Gentil SL; Mantelatto FLM¹; McNamara JC¹ and Leone FA

Departamento de Química and ¹Departamento de Biologia–FFCLRP/USP. 14040-901.Ribeirão Preto, SP.

(Na,K)-ATPase-rich posterior gills of crustaceans participate actively in the osmoregulation and ammonia excretion processes. Callinectes ornatus (Na,K)-ATPase-rich gill microsomes were obtained according to Furriel et al. (J. Exp. Zool. 301A:63, 2004). The enzyme activity was measured in 50 mM Hepes buffer, pH 7.5, containing 2 mM ATP, 5 mM Mg^{2+} , 50 mM Na⁺ and 10 mM K⁺, both in the presence and absence of 3 mM ouabain. ATP hydrolysis by (Na,K)-ATPase followed Michaelis-Menten kinetics with Km= 0.16 \pm 0.01 mM and V= 116.3 \pm 5.6 U/mg, while enzyme modulation by magnesium (V= 111.0 \pm 5.4 U/mg and K_{0.5}= 0.54 \pm 0.03 mM), sodium (V= 110.6 \pm 5.3 U/mg and K_{0.5}= 6.3 \pm 0.3 mM), potassium (V= 116.0 \pm 5.5 U/mg and K_{0.5}= 1.5 \pm 0.1 mM) and ammonium ions (V= 173.3 \pm 8.5 U/mg e K_{0.5}= 5.4 \pm 0.3 mM) occurred through site-site interactions. Interestingly, the stimulation of enzyme activity by potassium ions in the presence of increasing concentrations of ammonium ions resulted in a 50% higher specific activity. Ouabain inhibited up to 86% of total ATPase activity (Ki= 74.5 μ M), suggesting the presence of about 14% of phosphatases and/or other ATPases as contaminants. The inhibition of ATPase activity by oligomycin and ethacrynic acid associated with ouabain suggests the presence of FoF1- and K-ATPase, respectively, in the microsomes.

Supported by: FAPESP, CNPq, and CAPES.