eIF5A BINDS TO ACTIVE RIBOSOMES AND ITS INHIBITION IMPAIRS TRANSLATION IN S. CEREVISIAE

Zanelli, C. F.¹, Maragno, A. L. C.¹, <u>Gregio, A. P. B.</u>¹, Komili, S.², Pandolfi, J. R.¹, Mestriner, C. A.¹, Lustri, W. R., Valentini, S. R.¹

¹Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University – UNESP, Araraquara, SP, 14801-902, Brazil; ²Department of Systems Biology and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115

Abstract

The putative translation factor 5A (eIF5A) is essential for cell viability and is highly conserved from archebacteria to mammals. Although this protein was originally identified as a translation initiation factor, subsequent experiments did not support a role for eIF5A in general translation. In this work, we demonstrate that eIF5A interacts with structural components of the 80S ribosome, as well as with the translation elongation factor 2 (eEF2). Moreover, eIF5A is further shown to co-fractionate with monosomes in a translation-dependent manner. Finally, eIF5A mutants show altered polysome profiles and are sensitive to translation inhibitors. Our results re-establish a function for eIF5A in translation and suggest a role for this factor in translation elongation instead of translation initiation.

Supported by FAPESP, CNPq and CAPES

Key words: eIF5A, Hypusine, Saccharomyces cerevisiae, Translation