Isolation and Preliminary Enzymatic Characterization of an Isoforms Asp49 Phospholipase A₂ from *Bothrops moojeni* Venom

¹<u>Calgarotto, A. K.</u>, ¹Damico, D.C.S., ²Silva, S.L., ¹Ponce-Soto L. A., ¹Maso V., ¹Diz Filho, E.B.S., ¹Novello, J.C. and ¹Marangoni, S.

¹Department of Biochemistry, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil. ²Departament of Chemistry – (UFAM), Manaus, AM.

Snake venoms are formed by a complex mixture of active substances, mainly proteins, often responsible for the observed pharmacological and toxicological symptoms that follow the envenomation by snakebite. Among these proteins, enzymes like phospholipase A_2 with and without catalytic activity are responsible for several biological effects, including neurotoxicity, edema formation, anticoagulant and myotoxic activities as well as different (pro- and antiaggregating) effects on blood platelets.

The objective of this work was to purify and characterize enzymatictly a PLA₂ isoform with catalytic activity hasn't been studied from *Bothrops moojeni* venom. PLA₂ was isolated from *B. moojeni* venom by a combination of molecular exclusion Superdex G75 column and Reverse phase–HPLC on C-18 column. SDS-PAGE in the presence or absence of DTT showed that PLA₂ (BmTX-I) had a molecular mass of approximately 15 kDa. Amino acid analysis revealed a high content of basic and hydrophobic amino acids (Lys, Gly, and Tyr). BmTX-I showed alosteric behavior; with maximal activity at pH 8.0 and 35- 45 °C. Full PLA₂ activity required Ca²⁺ but was inhibited by Cd²⁺, Mn²⁺ and Mg²⁺. Crotapotin (Crtp-II cum) from *Crotalus durissus cumanensis* rattlesnake venom significantly inhibited the enzymatic activity of BmTX-I.

The novel isoform Asp49 PLA₂ from *B. moojeni* venom was purified and it presented similar enzymatic properties to other PLA₂ isolated from snake venoms.

Supported by CAPES, FAPESP and CNPq