TRIATOMA INFESTANS SALIVA PROTEOME IS RICH IN PLATELET AGGREGATION INHIBITORS

Sébastien Charneau¹*, Magno Junqueira², Camila M. Costa¹, Daniele L. Pires³, Jaime M. de Santana³, Antonio R. L. Teixeira³, Andrej Shevchenko², Carlos André O. Ricart¹, Marcelo V. de Sousa¹

¹Laboratory of Protein Chemistry and Biochemistry, University of Brasília, 70910-900-DF, Brazil. ²Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany. ³Chagas´ Disease Multidisciplinary Research Laboratory, University of Brasília, 70910-900-DF, Brazil

Salivas of Chagas' disease vectors, such as the bloodsucking triatomine insect Triatoma infestans, contain molecular cocktails that prevent vertebrate-prev hemostatic events such as coagulation, vasoconstriction and platelet aggregation. In order to characterize the *T. infestans* saliva proteome, we separated secreted salivary proteins by two-dimensional gel electrophoresis (2-DE). More than 200 salivary proteins were detected in the 2-DE map, mainly in the alkaline region. By nanoLC MS/MS using a LTQ-Orbitrap equipment followed by Mascot and MS-Blast searches, we identified 58 main protein spots. Most of such proteins bear potential blood-feeding associated functions, particularly anti-platelet aggregation proteins belonging to lipocalin and apyrase families. This crude saliva distinguishes itself from other arthropod salivas by its apyrase diversity and abundance. Its protein composition indicates a highly specific molecular mechanism of early response to platelet aggregation. This first proteome study of *T. infestans* secreted saliva, provides basis for better understanding this fluid protein composition highly directed to counterpart hemostasis of the prey promoting blood-feeding.

Keywords: saliva; *Triatoma infestans*; Chagas' disease; apyrases; lipocalins