REDOX PROPERTIES OF ATP-SENSITIVE K⁺ CHANNELS IN BRAIN MITOCHONDRIA

<u>Fornazari, M. ¹</u>; de Paula, J.G.¹; Castilho, R.F. ² Kowaltowski A.J.¹ 1-Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo; 2-Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas

Several studies have shown that mitochondrial ATP-sensitive K⁺ channel (mitoK_{ATP}) opening prevents ischemia/reperfusion injuries in heart, in a manner involving changes in redox state. Brain mitoK_{ATP} channel activation also protects against ischemic damage and excitotoxic cell death. Since these processes are associated with changes in mitochondrial redox state, we studied the redox properties of brain mitoK_{ATP}. MitoK_{ATP} activation during excitotoxic cell death prevented cellular accumulation of reactive oxygen species (ROS). Furthermore, mitoK_{ATP} activation in isolated brain mitochondria strongly prevented H₂O₂ release by these organelles. Interestingly, the activity of mitoK_{ATP} activity, endogenous and exogenous ROS activated the channel. Indeed, the use of substrates that lead to higher levels of mitochondrial ROS release closely correlated with enhanced K⁺ transport activity through this pathway. Altogether, our results indicate that brain mitoK_{ATP} is a redox-sensitive channel that controls mitochondrial ROS release, preventing cellular damage promoted by mitochondrial ROS during excitotoxicity.

Supported by FAPESP, CNPq and NIH