TRANSFORMATION PRODUCTS OF EXTRACELLULAR NAD⁺ IN THE RAT LIVER: KINETICS OF FORMATION AND METABOLIC ACTION

Bracht, A.¹, Kangussu, M.¹, Sá-Kanishi, A.B., Lopez, C.H.¹, Kelmer-Bracht, A.M.¹, Broetto-Biazon, A.C.¹

Departamento de Bioquímica, Universidade Estadual de Maringá, 87020900 Maringá, Brazil

Extracellular NAD⁺ is a paracrine agent in the liver. Its main effects are increases in portal perfusion pressure and glycogenolysis and transient inhibitions of oxygen consumption and gluconeogenesis. Extracellular NAD⁺ is also extensively transformed in the liver. The purpose of the present work was to determine the main products of extracellular NAD⁺ transformation and to quantify their contribution as paracrine agents. The experimental system was the isolated perfused rat liver. The NAD⁺ transformation was monitored by HPLC. The single pass transformation of 100 μ M NAD⁺ ranged between 75% at 1.5 minute after starting infusion to 95% at 8 minutes. The most important products of single pass NAD⁺ transformation in the outflowing perfusate were ADP-ribose > uric acid \approx inosine. Cyclic ADP-ribose (cADP-ribose) as well as adenosine were not detected in the outflowing perfusate. The metabolic effects of ADP-ribose were essentially those already described for NAD⁺. These effects were sensitive to suramin (P2 purinergic receptor) but insensitive do 3,7-dimethyl-1-(2-propynyl)-xanthine (A2 purinergic receptor antagonist). Inosine, a known purinergic A3 agonist, was equally active on metabolism, but uric acid was inactive. It was concluded that the metabolic and hemodynamic effects of extracellular NAD⁺ are caused mainly by interactions with purinergic receptors with a significant participation of its transformation products ADP-ribose and inosine.

Financial support: CNPq/Fundação Araucária.