EFFECT OF SINGLET OXYGEN ON DNA DAMAGE AND MORPHOLOGY OF MELANOMA CELLS

Santos, V.A.¹; Oliveira M. B. M.¹; Rocha, M.E.M.¹; Carnieri, E.G.S.¹; Noleto, G.R.¹; Cadena, S.M.S.C.¹; Franco, C.R.C.²; Trindade, E.S.²; Di Mascio, P.³; <u>Martinez,</u> <u>G.R.¹</u>

¹Departamento Bioquímica e Biologia Molecular, SCB-UFPR; ²Departamento Biologia Celular, SCB-UFPR; ³Departamento Bioquímica, IQ-USP.

Ultraviolet radiation (UV) can lead to human skin damage and melanin may act in photoprotection. Considering that UVA radiation (320-400 nm) promotes the formation of singlet oxygen $({}^{1}O_{2})$, our main interest was to investigate the specific role of ¹O₂ in DNA damage and cell morphology of d melanoma cells (B16-F10) and SK-MEL). The ${}^{1}O_{2}$ was generated by thermolysis of naphthalene endoperoxide (DHPNO₂). The melanogenesis was stimulated by L-tyrosine. Evaluation of DNA damage showed that B16-F10 cells, which had melanogenesis stimulated and were treated with DHPNO₂ (1 mmol/L), exhibited higher levels of 8oxodG (100% to the control and 55% to non-stimulated cells). Scanning electron microscopy analysis showed morphological changes for melanoma cells treated with DHPNO₂ (1 and 5 mmol/L). Small cells, loss of microspikes and some secretion vesicles were observed when compared to the control. However, compared to the cells supplemented with L-tyrosine and treated with ¹O₂, the latter were more adherent, flattened and spread out. In conclusion, ¹O₂ promoted higher DNA damage in melanoma cells with stimulated melanogenesis, however melanin seems to protect cells to higher amounts of ¹O₂. These results may contribute to a better understanding of the cell mechanisms related to UVA radiation exposure and phototherapy. Supported by CAPES, CNPg and Milênio Redoxoma - CNPg.