ENZYMATIC CHARACTERIZATION OF TWO ACIDIC PHOSPHOLIPASES A₂ ISOFORMS ISOLATED FROM *Lachesis muta* SNAKE VENOM

<u>André L. Fuly¹</u>, Russolina B. Zingali², Jorge A. Guimarães³ ¹Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, ²Instituto de Bioquímica Médica, CCS, Universidade Federal do Rio de Janeiro, RJ, ³Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.

In previous reports, we showed that phospholipases A2, denoted LM-PLA2-I and LM-PLA2-II isolated from Lachesis muta snake venom showed indirect hemolytic activity, inhibition on platelet aggregation, edema and myotoxicity. Phospholipase A₂ (PLA₂) enzymes (EC 3.1.1.4) are able to hydrolyze phospholipids generating fatty acids and lysophospholips, that regulate cellular phospholipid Here, we investigated which physiology. substrates (phosphatidylcholine, phosphatidylserine, phosphatidylglycerol, phosphatidic acid) is better hydrolyzed by them as well as which lysophospholipids formed are important on platelet effects. We observed that both PLA₂s did not hydrolyze phosphatidylserine or phosphatidic acid. But, for phosphatidylcholine and phosphatidylglycerol activities with different potencies and affinities were achieved, 30 % of activity upon phosphatidylglycerol compared to phosphatidylcholine hydrolysis. Both enzymes required Ca⁺⁺ for activity and the replacement of it by other divalent cations reduced PLA₂ activity. Only when enzymes were mixed with phosphatidylcholine, they inhibited collagen induced platelet aggregation, in spite of enzymes hvdrolvzed phosphatidylglycerol. The commercial inhibited lysophosphatidylcholine platelet aggregation whereas lysophosphatidylglycerol did not. As expected, enzymes treated with pbromophenacyl bromide, the PLA₂ activity and inhibition on platelet were lost. Acknowledgments: UFF-PROPP; FAPERJ; CNPq; CAPES Kew words: Lachesis muta – phospholipases A_{p} – p-bromphenacyl bromide –

Kew words: Lachesis muta – phospholipases A_2 – p-bromphenacyl bromide lysophosphatidylcholine