EXPRESSION OF HUMAN HYPOXIA INDUCIBLE FACTOR 1 IN YEAST Ferreira, T.C.¹, Gassmann, M.² and <u>Campos, E.G.¹</u>

¹Departamento de Biologia Celular, Universidade de Brasília, DF, Brazil; ²Center for Integrative Human Physiology, Zurich, Switzerland.

Hypoxia inducible factor-1 (HIF-1) is a transcription factor composed of a constitutively expressed subunit (HIF $\cdot 1\beta$ or ARNT) and a regulatory subunit (HIF \cdot 1α), which is continuously degraded under normoxia. HIF- 1α is the key factor in cellular response to low oxygen tension. The molecular mechanisms that underlie the full activation of the limiting subunit (HIF-1 α) are poorly understood. In this study we determined the viability of expressing both subunits of human HIF-1 in Saccharomyces cerevisiae as a model study. We show that both intact subunits were expressed in S. cerevisiae grown under normoxia. HIF-1a expressed in yeast cells grown under normoxia migrated similarly (on SDS-PAGE) to HIF-1a present in protein extracts of hypoxic HeLa cells. We did not observe an immunocomplex signal in the region of 104 kDa (corresponding to the dephosphorylated form of HIF-1 α) in Western Blot experiments, indicating that all the expressed HIF-1 α in yeast was phosphorylated, as it is in mammalian cells exposed to hypoxia. Additionally, we show that recombinant HIF-1 α was able to form a heterodimer with HIF-1 β and bind to the human erythropoietin HRE (hypoxia response) element) motif, while such binding was not observed in extract of yeast cells coexpressing the full length HIF -1α and a truncated version of HIF -1β .